Note on an asymmetric diophantine approximation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Diophantine approximation

Given a set of nonnegative real numbers Λ= {λi}i=0, a Λ-polynomial (or Müntz polynomial) is a function of the form p(x)=ni=0 aizi (n∈N). We denote byΠ(Λ) the space of Λ-polynomials and byΠZ(Λ) := {p(x)=ni=0 aizi ∈Π(λ) : ai ∈ Z for all i≥ 0} the set of integral Λ-polynomials. Clearly, the sets ΠZ(Λ) are subgroups of infinite rank of Z[x] wheneverΛ⊂N, #Λ=∞ (by infinite rank, wemean that the real ...

متن کامل

A Note on Metric Inhomogeneous Diophantine Approximation

An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...

متن کامل

A note on simultaneous Diophantine approximation on planar curves

Let Sn(ψ1, . . . , ψn) denote the set of simultaneously (ψ1, . . . , ψn)–approximable points in Rn and S∗ n (ψ) denote the set of multiplicatively ψ–approximable points in Rn. Let M be a manifold in Rn. The aim is to develop a metric theory for the sets M∩Sn(ψ1, . . . , ψn) and M∩S∗ n (ψ) analogous to the classical theory in whichM is simply Rn. In this note, we mainly restrict our attention to...

متن کامل

A Note on Simultaneous Diophantine Approximation in Positive Characteristic

In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error term for the number of coprime solutions of the one-dimensional Diophantine approximation problem in the field of formal Laurent series over a finite base field. In this note, we generalize their results to higher dimensions.

متن کامل

A note on zero-one laws in metrical Diophantine approximation

q ψ(q) diverges but A(ψ) is of zero measure. In other words, without the monotonicity assumption, Khintchine’s theorem is false and the famous Duffin-Schaeffer conjecture provides the appropriate statement. The key difference is that in (1), we impose coprimality on the integers p and q. Let A(ψ) denote the resulting subset of A(ψ). The Duffin-Schaeffer conjecture states that the measure of A(ψ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1946

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1946-08554-7